Решение тригонометрических уравнений
Слайды и текст этой презентации
Наталья Васильевна
10 класс
МОУ «Киришский лицей»
Решение тригонометрических уравнений.
Проблемы, возникающие при решении тригонометрических уравнений.
уравнений.
1. Знать формулы для решения простейших тригонометрических уравнений.
2. Различать типы тригонометрических уравнений и знать способы их решений.
3. Уметь решать тригонометрические уравнения любых типов.
Выделение основных проблем при решении
этих уравнений:
Потеря корней.
Посторонние корни.
Отбор корней.
А) 3 х – 5 = 7
Б) х2 – 8 х + 15 = 0
В) 4 х2 – 4 х + 1= 0
Г) х4 – 5 х2 + 4 = 0
Д) 3 х2 – 12 = 0Ответы
4
3; 5
0,5
-2; -1; 1; 2
-2; 2
А) (sin a – 1) (sin a + 1)
Б) sin2 a – 1 + cos2 a
В) sin2 a + tg a ctg a + cos2 a
Г)Ответы
— cos2 a
0
2
|1- tg х|
1
120° 2π/3 π/3 60°135° 3π/4 π/4 45°150° 5π/6 1/2 π/6 30°
180° π -1 0 1 0 0° x
-1/2 ½ 2π 360 (cost)
210° 7π/6 -1/2 11π/6 330° [-π/6]
225° 5π/4 7π/4 315° [-π/4]
240° 4π/3 5π/3 300° [-π/3]
-1
270° 3π/2 [-π/2]
(sint)
0
π
1
-1
-а
а
arccos а = t
arccos(-а)
Арккосинусом числа а называется
такое число (угол) t из [0;π], что
cos t = а.
Причём, | а |≤ 1.
arccos(- а) = π- arccos а
Примеры:
1)arccos(-1)
= π
2)arccos( )
π/2
-π/2
-1
1
а
arcsin а =t
— а
arcsin(- а)= — arcsin а
arcsin(- а)
Арксинусом числа а называется
такое число (угол) t из [-π/2;π/2],
что sin t = а.
Причём, | а |≤ 1.
х
0
а
arctgа = t
Арктангенсом числа а называется
такое число (угол) t из (-π/2;π/2),
что tg t = а .
Причём, а Є R.
arctg(-а) = — arctg а
-а
arctg(-а )
Примеры:
1) arctg√3/3 =
π/6
2) arctg(-1) =
-π/4
π
а
arcctg а = t
Арккотангенсом числа а называется
такое число (угол) t из (0;π),
что ctg t = а.
Причём, а ЄR .
arcctg(- а) = π – arcctg а
— а
arcctg(- а)
1) arcctg(-1) =
Примеры:
3π/4
2) arcctg√3 =
π/6
sin (-π/3)
cos 2π/3
tg π/6
ctg π/4
cos (-π/6)
sin 3π/4
arcsin √2/2
arccos 1
arcsin (- 1/2 )
arccos (- √3/2)
arctg √32 вариант
cos (-π/4 )
sin π/3
ctg π/6
tg π/4
sin (-π/6)
cos 5π/6
arccos √2/2
arcsin 1
arccos (- 1/2)
arcsin (- √3/2)
arctg √3/3
— √3/2
— 1/2
√3/3
1
√3/2
√2/2
π/4
0
— π/6
5π/6
π/3Ответы 2 вариант
√2/2
√3/2
√3
1
— 1/2
— √3/2
π/4
π/2
2π/3
— π/3
π/6
1) cost=0
t = π/2+πk‚ kЄZ
2) cost=1
t = 2πk‚ kЄZ
3) cost = -1
t = π+2πk‚ kЄZ
1) sint=0
t = πk‚ kЄZ
2) sint=1
t = π/2+2πk‚ kЄZ
3) sint = — 1
t = — π/2+2πk‚ kЄZ
t = arcctg а + πk‚ kЄZ
4.arcsin(4x²-3x)
1) -1≤ 2х+1 ≤1
-2≤ 2х ≤0
-1≤ х ≤0
Ответ: [-1;0]
2) -1≤ 5-2х ≤1
-6≤ -2х ≤ -4
2≤ х ≤3
Ответ: [2;3]
-1≤ х²-1 ≤ 1
0 ≤ х² ≤2
Ответ:
t= ±arccos(-1/2)+2πk, kЄZ
t= ± + 2πk, kЄZ
Частный случай:
t = πk, kЄZ
t = arctg1+πk, kЄZ
t = + πk, kЄZ.
t = arcctg( ) + πk, kЄZ
t = + πk, kЄZ.
2x = -π/4 + πk, kЄZ
x = -π/8 + πk/2, kЄZ
Ответ: -π/8 + πk/2, kЄZ.2) cos(x+π/3) = ½
x+π/3 = ±arccos1/2 + 2πk, kЄZ
x+π/3 = ±π/3 + 2πk, kЄZ
x = -π/3 ± π/3 + 2πk, kЄZ
Ответ: -π/3 ± π/3 + 2πk, kЄZ
3) sin(π – x/3) = 0
упростим по формулам приведения
sin(x/3) = 0
частный случай
x/3 = πk, kЄZ
x = 3πk, kЄZ.
Ответ: 3πk, kЄZ.
Решаются методом введения новой переменной
a∙sin²x + b∙sinx + c=0
Пусть sinx = p, где |p| ≤1, тогда a∙p² + b∙p + c = 0
Найти корни, вернуться к замене и решить простые уравнения.
1)Первой степени:
Решаются делением на cos х (или sinx) и методом введения новой переменной.
a∙sinx + b∙cosx = 0
Т.к. sinx и cosx одновременно не равны нулю, то разделим обе части уравнения на cosx (или на sinx). Получим: простое уравнение
a∙tgx + b = 0 или tgx = mПример. Решите уравнение sinx + 2cosx = 0.
Решение: Разделим обе части уравнения на cosx.Получим
Ответ:
Решаются делением на cos² х (или sin²x) и методом введения новой переменной.
a∙sin²x + b∙sinx∙cosx + c∙cos²x = 0
Разделим обе части на cos²x. Получим квадратное уравнение:
a∙tg²x + b∙tgx + c = 0.П р и м е р . Решить уравнение: 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,
sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,
tg2 x + 4 tg x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,
корни этого уравнения: y1 = 1, y2 = 3, отсюда
1) tg x = –1, 2) tg x = –3,
Ответ:
А sinx + B cosx = C. А, В, С 0sin x + cos x = 1 .
Р е ш е н и е . Перенесём все члены уравнения
влево:
sin x + cos x – 1 = 0 ,
тригонометрической подстановки
Решаются с помощью введения вспомогательного аргумента.А sinx + B cosx = CПри переходе от уравнения (1) к уравнению (2), могла произойти потеря корней, значит необходимо проверить, являются ли корни уравнения корнями данного уровнения.
Проверка
Если ,
— не верно, значит
, не является корнями исходного уравнения
Ответ:
— вспомогательный аргумент.
Универсальная подстановка.
х + 2n; Проверка обязательна!
Понижение степени.
= (1 + cos2x ) : 2
= (1 – cos 2x) : 2
Метод вспомогательного аргумента.
Увидел произведение – делай сумму.
Увидел сумму – делай произведение.
опасные формулы (универсальная подстановка).Этими операциями мы сужаем область определения.
2. Лишние корни:возводим в четную степень.
умножаем на g(х) (избавляемся от знаменателя).
Этими операциями мы расширяем область определения.
Потеря корней, лишние корни.
На «3»
3 sin x+ 5 cos x = 0
5 sin2 х — 3 sinх cos х — 2 cos2х =0
На «4»
3 cos2х + 2 sin х cos х =0
5 sin2 х + 2 sinх cos х — cos2х =1
На «5»
2 sin x — 5 cos x = 3
1- 4 sin 2x + 6 cos2х = 0Вариант 2.
На «3»
cos x+ 3 sin x = 0
6 sin2 х — 5 sinх cos х + cos2х =0
На «4»
2 sin2 x – sin x cosx =0
4 sin2 х — 2sinх cos х – 4 cos2х =1
На «5»
2 sin x — 3 cos x = 4
2 sin2 х — 2sin 2х +1 =0
Спасибо. Очень грамотная и содержательная презентация.